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The Kubo formula is employed to obtain an expression for ionized-impurity mobility, includ-
ing higher-order impurity scattering effects and electron-electron scattering effects for non-
degenerate semiconductors. Without electron-electron scattering, the lowest-order term of
the mobility, as has been previously demonstrated, is found to be the same as the well-known
Brooks-Herring formula for ionized-impurity mobility. The form of the higher-order impu-
rity scattering terms has also been previously given. We have evaluated these terms and
found them to be negligibly small for the range of impurity concentration and temperature con-
sidered here. Electron-electron scattering is calculated by a single-particle approximation
from the time-independent Hartree-Fock theory, taking the electron-impurity scattering as the
basic mechanism and treating the electron-electron interactions as perturbations. An impu-
rity-scattered electron in our model is found to interact only with other independent electrons
not interacting with impurities. - Taking into account the correction of electron-electron scat-
tering effects, the Brooks-Herring formula is found to be reduced by a factor which can be ex-
pressed in closed form as 1—¢~!, This factor of 0.632 agrees well with other theoretical cal-
culations using the Boltzmann transport theory.
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I. INTRODUCTION

Two theoretical treatments have been proposed
to describe ionized-impurity-scattering-limited
mobility in semiconductors: the Conwell-Weiss-
kopf! and Brooks-Herring?™® treatments. These
two different approaches yield nearly the same re-
sult. While these formulas are qualitatively cor-
rect, there are refinements by which they may be
improved. One of these improvements involves
taking into account the electron-electron scatter-
ing.®~® When ionized-impurity scattering is domi-
nant in determining mobility, the momentum re-
distribution among the electrons through electron-
electron interactions tends to reduce the mobil-
ity."®

A classical approach to calculating the electron-
electron scattering of a completely ionized gas was
given by Spitzer and Hirm.!® Starting from the
Boltzmann equation with the help of the Fokker -
Planck equation, they found that the electron con-
ductivity is reduced by a factor of 0.5816. Another
calculation has been made by Appel. ! Appel used

a variational principle with electron-electron scat-
tering a small perturbation. He took the inter- -
action between electrons to be a shielded Coulomb
potential. Starting from the Boltzmann equation
and calculating up to the second-order terms,
Appel found that the electron-electron scattering
reduced the Brooks-Herring mobility by a factor
of 0.573, independent of temperature.

In this paper, we start from the Kubo formula, '?
As discussed in Fujita,!® the Kubo formula is re-
duced to a simpler form which enables us to cal-
culate the ionized-impurity mobility including
higher-order scattering effects. Fujita has dis-
cussed the general expressions for the conductivity
derived from the Kubo formula, including higher-
order impurity scattering effects. We use his gen-
eral expressions to evaluate the effects of high-
order impurity scattering in detail, extend his
work to derive expressions for the mobility, in-
cluding electron-electron scattering in all orders,
and calculate these effects in detail.

In Sec. II we discuss the Kubo formula briefly
and present the results of higher-order impurity
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scattering effects without the correction of elec-
tron-electron collisions. In Sec. III we calculate
the effects of electron-electron scattering, and in
Sec. IV we present some conclusions drawn from
this study.

All formulas in this paper are in the mks sys-
tem of units and the meanings of all symbols in this
paper are listed in the Appendix.

II. HIGHER-ORDER IMPURITY SCATTERING

It is possible to solve some nonequilibrium trans-
port problems such as electric conductivity with-
out going through the traditional Boltzmann trans-
port equation, and to formulate the macroscopic
behavior in microscopic terms. This was first
demonstrated by Kubo!'Z in his microscopic, exact
formulation of an electric-conductivity tensor.
Fujita has rewritten the original Kubo formula
in a slightly different form®
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Fujita has used this formula to evaluate the con-
ductivity for a system of noninteracting electrons
in an impurity potential such that the time-inde-
pendent Hamiltonian of the system (without ex-
ternal field) is composed of the sum of single-par-
ticle Hamiltonians. This reduces the many-body
problem to a one-body problem. Expanding the
conductivity in ascending powers of n, (the ionized-
impurity or scatterer concentration), the lowest-
order mobility term is found to be the well-known
Brooks-Herring formula for mobility (denoted by
Lsr)
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where we have used a Boltzmann distribution for
the electrons as appropriate to a nondegenerate
semiconductor, and we have used the screened
Coulomb potential for the interaction between elec-
tron and ion as in the Brooks-Herring treatment.
Fujita’s expression for conductivity is in terms
of the Fermi distribution function, and Fujita has
set 7 equal to unity.

Fujita'® has also given expressions for the sec-
ond-order conductivity terms. These involve
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scattering from two impurities which may or may
not be interacting. We have evaluated these sec-
ond-order expressions in detail and (after lengthy
calculations) found them to be very small—in fact,
negligible—for nondegenerate semiconductors.

III. ELECTRON-ELECTRON SCATTERING

Suppose that the total Hamiltonian for a system
of N electrons interacting via two-body forces and
interacting with ionized impurities is given by

H=H,+H,, (5)
Hi=2 h§?+ 25 v =209 | (6)
i Fa i
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For Hy, the single-particle part, 1{"’ is the
kinetic energy of electron j and V{’=v(»Y’ -R,)
is the potential between the electron at a position
79 and the infinitely heavy impurity at the fixed
position R,. For H,, the two-body part, V,, is
the interaction potential between electron at a
position #; and electron m at r,,.

Employing the single-particle approximation
from the time-independent Hartree-Fock theory, 1*
we can transform the many-body Hamiltonian H
into a single-particle-like Hamiltonian H:

H-H=2,h" | (8)

hs=h0+2a Vo +hee . (9)

The eigenvalues of 2%’ are!*

EF =ep+20 (K'K|Vgg
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where the €, are the eigenvalues of ‘%, the elec-
tron-impurity part of H. The E{* are termed the
self-consistent energies of the levels.

This is to say that, in this single-particle-like
approximation, we take one electron as a basic
particle and treat the other electrons as contributing
to the perturbing potential. Note that the pertur-
bation term in (10) will cancel out if XK' =K, since
an electron does not act on itself.

In this way the two-body problem is reduced to
an equivalent one -body problem, and we can trans-
form (1) and (2) into

9 “ 1
=1 2 ~fwi
0u(w) lim :}12 Bu,,f dte*' =

X Tr( iu e~({/h)ths n/e(i/h)ths ) , (11)
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1
n'= —srn (12)

1+ePs
respectively. Following the same procedure as
Fujita for the single-electron problem and setting
w=0and u=v=x, we can express the static con-
ductivity in the P - K representation!® as

. ih
0=0,,(0)=~ (777—%)7; ”%f app,

-
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where we omit the two limit symbols with the un-
derstanding that U~ 0 and a— 0 where a is a positive
number. In (13) the matrix element n¢ (P) is de-
fined by

nt (B)=(B+(R/2)|n'| P - (R/2)) (14)

in the P - K representation. !> The expression of
the form (01%!K) in (13) is a matrix element which
is itself an operator. A general definition is

®|n(B) K= ngee B 1F -1 hg e B) 0¥,
(15)

where hg.g-(P) is in the same form as (14), and
7*" is a displacement operator acting only on a
function of P in the P-K representation such that!?

R A(B) =B+ K/2) K . (16)

The actual operator in the K ~ K’ element is
(n=1)" (1=ika). Fujita expands this resolvent
operator in a perturbation series'®

1 1

T T = a7

By h- ho=1-g

L3 1 K
g,=-V+Z)(—Vm> -v, (18)
K=1 0
where V=3,V,.
In this section we expand the resolvent operator
(hg=1)"! in such a way that

7ol =R; =R MRy +R o Ry By Ry — ++ 4+ . (19)
Since we consider the electron-electron interac-
tions as the perturbation potential, we can cal-
culate the K- K’ elements of %,, in the P - K rep-

. resentation in the same way as we do those of the
electron-ion potential, by means of a Fourier
transformation. 3

Examining all elements of (z, —1)~!, we find that
those terms containing odd numbers of %,, vanish
and only those terms containing an even number
of h,, give contributions. Therefore, two &,
together should describe a certain interacting
process between two electrons and we may write
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or
M=+ o+ gteee, (21)

where the first term corresponds to R; in (19), the
second term corresponds to the second nonvanishing
term in (19), R, k., R, h R;, and so on. Thus, the
subscripts indicate the number of electrons in-
volved.

The matrix element ng(P) in (13) is related to the
distribution function of conduction electrons. We
assume that the electron distribution is not in-
fluenced by the electron-electron or electron-ion
interactions, and hence we can replace 4, in (12)

by ho. After manipulations the expression
9 ’ =
u., ng(P)

in (13) can be reduced to the Boltzmann distribu-
tion function as appropriate to a nondegenerate
semiconductor.

From our calculations we have concluded that,
except for the lowest-order term p*'’, all higher-
order terms in the impurity scattering are negli-
Hence, in this section we will take
only one impurity into account as a scatterer, and
g; will be set equal to the first nonvanishing term
in (18), or g;=V(1/hy-1)V.

The first term in the expansions of (13) can be
identified immediately as the first-order term of
Fujita.'® Therefore, we have

K1=HUpH (22)

as it should since this term is the contribution
without electron-electron scattering (electron-
impurity scattering being the only scattering mech-
anism).

We may represent components of the perturba-
tion expansion (19) by a set of diagrams. Let the
impurity be represented by a point (a cross X) in
the diagram, the perturbation arising from the im-
purity be indicated by a dotted line (corresponding
to V), the interaction between electrons be denoted
by a wavy line (corresponding to #,,), and the
propagation of the electron be represented by a
horizontal solid line. If we set the electron-im-
purity potential ¥ =0 in (18), then R; becomes a
term corresponding to the propagation of an elec-
tron “free” with respect to the impurity. In this
way we find that there are two kinds of diagrams
contributing to 0,, as shown in Fig. 1, where elec-
tron 1 is the basic electron in our model (this con-
vention is continued hereafter). Note that we break
the solid line of electron 1 into two parts for con-
venience in‘writing down the mathematical expres-
sions from the diagrams. In Fig. 1(a) electron 2
is free, corresponding to R;=1/(hg—-1). In both
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FIG. 1. Diagrams representing two interacting elec-
trons. (a) One of the electrons is free with respect to
the impurity. (b) Both electrons are scattered by the
impurities.

diagrams, the triangle represents the term R, of
(17), corresponding to the situation in which the
electron is scattered by an impurity, and the or-
dering in the triangle helps us to write down the
mathematical expression of the quantity g;, i.e.,
g1=V[1/(ne-1)]Vv.

The Coulomb force between any two electrons is
a long-range force. We will cut off this interac-
tion force by surrounding any given electron by a
virtual hole. This hole has the effect of a positive
charge, which screens out the electric potential of
the electron at all but very short distances. Two
electrons can then only interact if they come very
close. Such a screened potential occurs naturally
in any system where a cloud of electrons is avail-
able to spread itself out about a Coulomb source.
The effective charge Ze of the ionized-impurity
atom is Z=1 in most cases in elemental semicon-
ductors like silicon and germanium, and the den-
sity of these virtual holes is just the density of
electrons. Thus, the potential between electrons
has the same form as the electron-impurity poten-
tial, the screened Coulomb potential,

X X X
/7 \ / N\ / N\
/ \ / \ / \
YRS WEEN YR SR\ L1
2 u
\\/ 3
/
X
X
/x\ /\
/7 A\ / N\
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2
1
V)=« 42—:2 Sem, (23)
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by =< ezit ) ’ (24)

where the + sign is for an electron-electron poten-
tial, the - sign is for an electron-impurity po-
tential, and » stands for the distance between elec-
trons or electron and ion, according to circum-
stances.

For a cloud of » electrons there are n! similar
diagrams describing the same contribution, since
electrons are indistinguishable particles. If we
calculate the contribution of Fig. 1(a), correspond-
ing to p,, we get

NA=—§1T‘3: Kpn . (25)

For the contribution corresponding to Fig. 1(b),
we find that the integrand is zero, and hence Fig.
1(b) contributes nothing to the mobility. There-
fore, an electron being scattered by an impurity
and interacting with another electron which is free
with respect to impurities is the only contribution
to the electron-electron scattering involving two
electrons. For the case of three electrons, when-
ever the supplemental electrons are interacting
with each other or with an impurity, we find these
terms to be zero. The corresponding diagrams
are shown in Fig. 2.

The only nonzero term involving three electrons
is that in which the basic electron is being scattered

‘by an impurity and is interacting with two other

independent electrons free with respect to the im-
purity. The corresponding diagram is shown in
Fig. 3. The contribution of this diagram is found

FIG. 2. Diagrams representing three interacting electrons which contribute nothing to the conduction.
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FIG. 3. Diagram representing nonzero term of the
conduction involving three interacting electrons.

to be

1

Mg = 31 KeH - (26)

:NI S,

Since for two and three electrons our basic elec-
tron interacts only with other independent free elec-
trons, we assume that our basic electron will in-
teract only with other independent free electrons
for all higher-order terms of electron-electron
scattering. With this assumption, it is easy to
calculate the contribution of four interacting elec-
trons from the diagram as shown in Fig. 4; thus
we have

1

Ha= 77 /J'BH . (27)

sm[ ER

Continuing the same argument, we obtain

_ 1 14 1 %8 )
“‘(1 BT, T3 AT ) Hem e (29)

When the ionized-impurity scattering is the
dominant scattering mechanism in n-type semi-
conductors, the donor impurity atoms are prac-
tically all ionized. If we assume there is only one
kind of impurity atoms, then the concentration of
ionized impurities n4 is equal to the concentration
of conduction electrons n. Thus, (28) reduces to

p=(1-e™) ppx (29)

for the correction due to electron-electron scatter-
ing in all orders.

IV. CONCLUSIONS

Starting from the Kubo formula and extending the
results of Fujita!® for electron-impurity scatter-
ing, we have evaluated the effects of electron-
electron scattering on ionized-impurity mobility
by a single-particle-like approximation from the
time-independent Hartree-Fock theory. With the
correction of electron-electron interactions, the
existing Brooks-Herring formula is reduced by a

M. LUONG AND A. W.
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FIG. 4. Diagram representing four interacting elec-
trons with nonzero contribution to the conduction.

factor which can be expressed in closed form as
1-e¢™'. This reduction factor of 0.632 is tempera-
ture independent, reflecting the similarity between
ion and electron potentials. This correction factor
is in reasonably close agreement with previous pre-
dictions!®!! using Boltzmann’s theory.
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APPENDIX

The meanings of the symbols used in this study
are o, electric conduct1v1ty, w, frequency of the
external electric field; u, a vector (¢ number) in-
dependent of the particle coordinates; ¢, time co-
ordinate; £, volume of the system; Tr, trace;

I(f), /Mt [p-G/MtH, [/q  total-current density
operator; H, total Hamiltonian of the system with-
out external (electric) field; 7, h/2r (with z being
Planck’s constant); B8, 1/KyT; Kz, Boltzmann’s
constant; 7, the absolute temperature; u, mobility
limited by ionized impurities; €, dielectric constant
of the semiconductor; m*, effective mass of elec-
tron; Ze, effective charge of each ionized-impurity
atom; n, the conduction-electron density; n,, the
ionized-impurity or scatterer concentration;

1§, the kinetic energy of electron j; V&, the
electron-impurity potential; %, the single-particle
Hamiltonian without electron-electron interactions;
V,m, interaction potential between electron ! and
electron m; H,, the total single-particle-like
Hamiltonian; h,, the single-particle-like Hamil-
tonian; E,, the eigenvalues of i, €,, the eigen-
values of ; 71, the displacement operator defined
in the P - K representation; R;, the resolvent op-
erator; 1, i%a; a, a positive number; 1/x, the po-
tential screening distance.
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Photoemission and secondary electron emission (SEE) measurements have been used to in-
vestigate the band structure of graphite. The energy distribution curves obtained from both
types of measurements reveal identical features for those transitions to conduction-band states

occurring up to 5 eV above the vacuum level.

Two minima in the oy conduction band, located

at critical points T', and Qf,, have been observed at 7.5 and 8.6 eV above the Fermi level.
Emission from these final states is observed for E ll¢ orientation due to the relaxation of elec-
trons initially excited to P3; this Ele transition, which is observed at 14.5 0.5 eV, is in
good agreement with the predicted value of 13.5 eV assigned to transitions P3—P;. The o-
band gap at the Brillouin-zone center has been measured for E.Lc to be 11.5 +0.1 eV and the
separation of the o bands increases to 15.0 eV at @ in good agreement with the optical reflec-
tivity data. The observation and assignment of interband transitions at higher SEE energies
provide additional evidence in support of the two-dimensional band structure proposed by
Painter and Ellis. The photoemission measurements give detailed information concerning the
nature of the 7-band structure at points along the three-dimensional Brillouin-zone face. The
splitting of the 7 bands at P and @ is observed to be 0.8 eV, which gives rise to E 1 ¢ transi-
tions at 4.76 and 4. 82 eV associated with the saddle-point nature of the 7 bands at @, and a
value of 0.42 eV for the Slonczewski and Weiss parameter ¥;. The SEE results locate Pj be-
low the Fermi level, which provides evidence for electron occupancy at the center of the
Brillouin-zone edge in agreement with recent Fermi-surface studies.

I. INTRODUCTION

Graphite is a highly anisotropic crystal of space
group C§,, with an interlayer spacing (3.37 A)
which is large compared with the interatomic
spacing in any single layer (1.42 A). Consequently
most theoretical calculations!™* of the electronic
band structure have used, as a first approximation,
a single two-dimensional layer model which ne-
glects any interaction between successive layers.
The electron states may be separated into o and
7 bands analogous to the sp?-hybridized atomic
eigenstates, the former referring to states which
are even with respect to reflection in the layer
plane and the latter to those which are odd. The
m bands may be regarded as arising from the over-
lap of p, atomic orbitals which are oriented normal
to the layer plane. Each energy band in the single-

layer approximation splits into two closely spaced
states upon including the interaction between suc-
cessive planes. Since the 7 bands are related to
those atomic orbitals directed normal to the basal
plane, it follows that these bands will be particu-
larly sensitive to the interlayer interaction, and
the magnitude of the splitting is expected to be
greater than that for the o bands. This splitting
of the 7 bands is responsible for the 7 valence and
conduction bands overlapping at the Brillouin-
zone edge which, in turn, determines the complex
nature of the Fermi surface and the semimetallic
properties of graphite. The 7-band structure has,
therefore, been the subject of numerous theoret-
ical®® and experimental” studies.

Since the interlayer forces are weak, the selec-
tion rules determined for interband transitions in
the two-dimensional structure remain essentially



